Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Molecular quantum emitters are becoming increasingly important in quantum information and communication. As a stepping stone towards a single-molecule quantum system, the collective emission from the ensemble of isolated organic chromophores, randomly and sparsely incorporated into an organometallic host crystal, is characterized by Raman and temperature-dependent photoluminescence spectroscopies. The tetracene or rubrene guest chromophores are deposited at very low densities when the ferrocene host is grown in a crystalline form, so that each of the chromophores is well isolated by its organometallic molecular neighbors. The ensemble emission of the chromophores is compared to that of the crystalline or dissolved forms to identify its unique spectral features. The enhanced quantum yield and reduced spectral linewidth with a significant blue-shift in photoluminescence suggest that ferrocene is a novel type of host matrix, maximizing the ability of the tetracene guest to act as a well-isolated quantum entity, while suppressing unwanted environmental decoherence by confining it within the ferromagnetic (organometallic) host material.more » « lessFree, publicly-accessible full text available June 5, 2026
-
Abstract Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear optical responses is essential for evaluating materials whose optical properties are unknown a priori. A recent open-source code, ♯SHAARP.si, can provide such closed form solutions for crystals with arbitrary symmetries, orientations, and anisotropic properties at asingleinterface. However, optical components are often in the form of slabs, thin films on substrates, and multilayer heterostructures with multiple reflections of both the fundamental and up to ten different SHG waves at each interface, adding significant complexity. Many approximations have therefore been employed in the existing analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal orientation along a high-symmetry direction, phase matching conditions and negligible interference among nonlinear waves, which may lead to large errors in the reported material properties. To avoid these approximations, we have developed an open-source package named Second Harmonic Analysis of Anisotropic Rotational Polarimetry in Multilayers (♯SHAARP.ml). The reliability and accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker fringes using standard and commonly used nonlinear optical materials as well as twisted 2-dimensional heterostructures.more » « less
-
Liu, Zhiwen; Psaltis, Demetri; Shi, Kebin (Ed.)Optical Second Harmonic Generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. The closed-form analytical solution of the nonlinear optical responses is essential for evaluating the optical responses of new materials whose optical properties are unknown a priori. Many approximations have therefore been employed in the existing analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal orientation along a high-symmetry direction, phase matching conditions and negligible interference among nonlinear waves, which may lead to large errors in the reported material properties. To avoid these approximations, we have developed an open-source package named Second Harmonic Analysis of Anisotropic Rotational Polarimetry (♯SHAARP) for single interface (si) and in multilayers (ml) for homogeneous crystals. The reliability and accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker fringes predicted from the package using standard materials. SHAARP.si and SHAARP.ml are available through GitHub https://github.com/Rui-Zu/SHAARP and https://github.com/bzw133/SHAARP.ml, respectively.more » « less
-
null (Ed.)A wide variety of two-dimensional (2D) metal dichalcogenide compounds have recently attracted much research interest due to their very high photoresponsivities (R) making them excellent candidates for optoelectronic applications. High R in 2D photoconductors is associated to trap state dynamics leading to a photogating effect, which is often manifested by a fractional power dependence (γ) of the photocurrent (I ph ) when under an effective illumination intensity (P eff ). Here we present photoconductivity studies as a function of gate voltages, over a wide temperature range (20 K to 300 K) of field-effect transistors fabricated using thin layers of mechanically exfoliated rhenium diselenide (ReSe 2 ). We obtain very high responsivities R ~ 16500 A/W and external quantum efficiency (EQE) ~ 3.2 x 10 6 % (at 140 K, V g = 60 V and P eff = 0.2 nW). A strong correlation between R and γ was established by investigating the dependence of these two quantities at various gate voltages and over a wide range of temperature. Such correlations indicate the importance of trap state mediated photogating and its role in promoting high photo responsivities in these materials. We believe such correlations can offer valuable insights for the design and development of high performance photoactive devices using 2D materials.more » « less
An official website of the United States government
